**Ministry of Environmental Protection** 



# **Municipal Wastewater Treatment in Israel**

Amir Erez (Ph.D) Head of Water & Stream Division

**March 2018** 

**Municipal Wastewater Treatment in Israel Total municipal sewage - 540 MCM** 99% of the sewage is centrally collected 1% is discharged to cesspools in rural areas 97% is treated: 82% is reclaimed for reuse 18% is released to the rivers or sea

# **Effluent quality**

primery treatment: 8% BOD5 >20 mg/L; TSS >30 mg/L 50 % secondary tretment: BOD5 ≤20 mg/L; TSS ≤30 mg/L tertiary treatment: BOD5 42 % ≤10 mg/L; TSS ≤10 mg/L; effluent disinfection; N&P reduction

# **Definitions**

#### PRIMARY TREATMENT

**OECD** and **AQUASTAT**:

BOD5 removal of at least 20% and TSS removal of at least 50%

Israel: BOD5 >20 mg/L; TSS >30 mg/L

#### **SECONDARY TREATMENT**

**OECD and AQUASTAT:** 

BOD removal of at least 70% and COD removal of at least 75%

Israel: BOD5 ≤20 mg/L; TSS ≤30 mg/L

#### **TERTIARY TREATMENT**

**OECD and AQUASTAT:** 

BOD removal of at least 95% and COD removal of at least 85% and at least <u>one of the following</u>: nitrogen removal of at least 70%; phosphorus - at least 80%; faecal coliform density less than 1000 in 100 ml

Israel: BOD5 ≤10 mg/L; TSS ≤10 mg/L; F.Coli - 10/100 ml (for irrigation) and 200/100ml (for discharge to rivers) and nitrogen and phosphorus removal

**Regulation and business license requires:** Wastewater, Effluent and Sludge sampling and analyzes by **WWTP** laboratories and by independent laboratories

**WWTP** send analyzes results (excel files formats) to MoEP and to the other regulators

**MoEP: Database System** 

Ministry of Health & Water Authority has a different database

**MoEP:** Reports of WWTP wastewater, effluent and sludge amount and quality

# New Database System for WWTP (in developing)

#### **Owners: MoEP - Ministry of Health - Water Authority**

Wastewater, Effluent and Sludge sampling and analyzes by WWTP laboratories and by independent laboratories

**Independent Laboratories and WWTP** send analyzes results <u>directly</u> to the new Database System

New Database System

**Regulators: Reports of WWTP wastewater, effluent and sludge amount and quality** 

# Wastewater Reuse

National policy calls for the gradual replacement of freshwater allocations to agriculture by reclaimed effluent

# Wastewater Reuse

- can cause significant risks to:
- 1. Public health
- 2. Groundwater
- **3. Rivers and Sea**
- 4. Soil and to agricultural crops

Potential impacts of wastewater components

# Water Sources & Public Health

- Organic pollutants
- •Nitrogen, Phosphorus
- Chlorides
- •Toxic compounds (heavy metals, organochlorines, etc.)

# Plants & Soil

- •High Salinity
- •Sodification of the soil (SAR)
- •Excess Boron
- •Excess Nitrogen & Phosphorus

Israeli standards for effluent quality

• Standards for 36 parameters

• The standards take into consideration: Environmental, Agricultural, Flora, Public Health & Hydro-geological Aspects The way to achieve the new standards

•Organics, TSS, N & P Tertiary Treatment (WWTP)

•Pathogens Disinfection (WWTP)

•Metals

Boron

**Treatment at the source** (Industrial pre-treatment)

•Salt Removal

Treatment at the source (supply domestic water <150 ppm Cl<sup>-</sup>); Desalination of treated effluent; Source separation – sea disposal

Supply of domestic water <0.2 ppm B; Reduce B content in detergents

# Effluent quality standards (Average)

| Parameter                | Units     | Irrigation | Stream  |
|--------------------------|-----------|------------|---------|
| BOD5                     | mg/L      | 10         | 10      |
| TSS                      | mg/L      | 10         | 10      |
| COD                      | mg/L      | 100        | 70      |
| Total Nitrogen           | mg/L      | 25         | 10      |
| Ammonia                  | mg/L      | 10         | 1.5     |
| Total phosphorus         | mg/L      | 5          | 1.0     |
| <b>Dissolved Oxygen</b>  | mg/L      | >0.5       | >3      |
| рН                       |           | 6.5-8.5    | 7.0-8.5 |
| Fecal Coliforms          | MPN/100mL | 10         | 200     |
| <b>Residual Chlorine</b> | mg/L      | 0.8-1.5    | 0.05    |

#### **Treatment at the WWTP**

## Effluent quality standards - Heavy Metals

| Parameter | <b>Units</b> | Irrigation | Stream |
|-----------|--------------|------------|--------|
| Arsenic   | mg/L         | 0.1        | 0.01   |
| Mercury   | mg/L         | 0.002      | 0.0005 |
| Chromium  | mg/L         | 0.1        | 0.05   |
| Nickel    | mg/L         | 0.2        | 0.05   |
| Lead      | mg/L         | 0.1        | 0.008  |
| Cadmium   | mg/L         | 0.01       | 0.005  |
| Zinc      | mg/L         | 2          | 0.2    |
| Copper    | mg/L         | 0.2        | 0.02   |
| Manganese | mg/L         | 0.2        |        |
| Cobalt    | mg/L         | 0.05       |        |

#### Treatment at the source

## Effluent quality standards

| Parameter           | <b>Units</b> | Irrigation | Stream |
|---------------------|--------------|------------|--------|
| Vanadium            | mg/L         | 0.1        |        |
| Iron                | mg/L         | 2          |        |
| Selenium            | mg/L         | 0.02       |        |
| Aluminum            | mg/L         | 5          |        |
| Molybdenum          | mg/L         | 0.01       |        |
| Beryllium           | mg/L         | 0.1        |        |
| Lithium             | mg/L         | 2.5        |        |
| Cyanide             | mg/L         | 0.1        | 0.005  |
| Hydrocarbons        | mg/L         |            | 1.0    |
| Anionic surfactants | mg/L         | 2.0        | 0.5    |

#### **Treatment at the Source**

# Effluent quality standards - Salts

| Parameter                  | Units            | Irrigation | Stream |
|----------------------------|------------------|------------|--------|
| Electrical<br>Conductivity | dS/m             | 1.4        |        |
| SAR                        | $(mmol/L)^{0.5}$ | 5          |        |
| Chloride                   | mg/L             | 250        | 400    |
| Sodium                     | mg/L             | 150        | 200    |
| Boron                      | mg/L             | 0.4        |        |
| Fluoride                   | mg/L             | 2          |        |

Treatment at the source

**Treatment processes for upgrading WWTPs** 

Nitrogen removal:

- anoxic/aerobic biological processes

**Phosphorus removal:** 

- anaerobic/aerobic biological processes
- chemical precipitation

## **Residual constituents removal:**

- coagulation/flocculation
- filtration (depth and membrane)

## **Effluent disinfection:**

chlorination (and dechlorination) UV

## **Centralized or Decentralized Wastewater Treatment ?**

# National policy calls for the traditional concept of wastewater management:

#### wastewater collection systems

# wastewater and sludge treatment in central treatment plants

#### **Preliminary treatment:**

- •Screening: coarse screens (10-25 mm) and fine screens (1-6 mm) •Grit removal
- •Flow equalization



#### Wastewater treatment processes used in Israel

Primary sedimentation (circular and rectangular tanks) Detention time: 1.5 – 2.3 hr; Removal efficiency: TSS 55 – 65% BOD5 25 – 28%



Wastewater treatment processes used in Israel

- Biological treatment:
- •Activated-sludge processes (conventional activated-sludge process; extended aeration; SBR- sequencing batch reactor;
- •Fixed-film reactor rotating biological contactor
- •MBBR -Moving Bed Biofilm Reactor (Aqwise biomass carriers)
- •Membrane Bioreactor (MBR) systems
- •Multi Stage Biological System
- •Stabilization ponds for small WWTPs

#### Activated-sludge



#### **Rotating biological contactor**



#### **Aqwise biomass carriers**



#### **Populated and new biomass carrier**

#### Wastewater treatment processes used in Israel

- Secondary clarification (circular and rectangular tanks)
- Effluent filtration (gravity granular-media filtration and pressure filtration)
- Effluent disinfection (chlorination and UV)



## **Membrane Bioreactor (MBR)**





# Waste stabilization ponds Widespread method for small WWTPs in Israel

Anaerobic ponds: Facultative ponds: Aerobic ponds: Aerated ponds: BOD5 volumetric loading rate: 150 - 350 g/m<sup>3</sup>d BOD5 surface loading rate: 15 - 35 g/m<sup>2</sup>d BOD5 surface loading rate: 5 - 15 g/m<sup>2</sup>d BOD5 volumetric loading rate: 40 - 150 g/m<sup>3</sup>d **Secondary Effluent Filtration** 

- Granular media filtration
- Membrane filtration (MF and UF)
- Soil-aquifer treatment (SAT) system

# **Effluent Disinfection**

- Chlorination
- Ultraviolet Radiation

# THANK YOU