Implementation of the Shared Environmental Information System (SEIS) principles and practices in the Eastern Partnership countries

The ENI SEIS II East project (2016-2020)

Regional plan of activities

Support regional/international commitments related to environmental reporting

Proposed thematic areas for regional cooperation

Water

Biodiversity

Air

Common pilot CORINE Land Cover

Relevance to regional and international obligations/initiatives

Water; Water quantity & water quality

- Convention on the Protection and Use of Transboundary Watercourses and International Lakes (Water Convention)
 - Water and Health Procotol
- United Nations Sustainable Development Goals
 - particularly Goal 6
- Water accounts (UN System of Economic-Environmental Accounting Framework for Water)
- EU Water Framework Directive
- The EU water related policies e.g. Water scarcity and droughts, Resource efficiency roadmap

Relevance to regional and international obligations/initiatives

Biodiversity; Emerald Network

- Cooperation with the Council of Europe on Bern Convention, particularly establishment of Emerald Network
- Convention on Biological Diversity and The Aichi Biodiversity Targets (to support National Biodiversity Strategy and Action Plan, <u>Programme of</u> <u>work on protected areas</u>)
- Aligment with the EU Habitat and Bird Directives (<u>Natura 2000 linking with</u> the Emerald Network)
- UN SDGs Goal 15 (Sustainably manage forests, combat desertification, halt and reverse land degradation, halt biodiversity loss)
- UNESCO World Heritage Convention and MaB Programme (<u>Biosphere</u> reserves)
- Other international instruments e.g. Ramsar Convention etc.

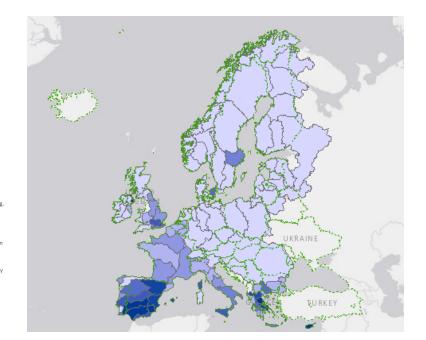
Commom pilot

CORINE Land Cover – Copernicus programme

Implementation of the CORINE land cover and land cover change for 6 capital areas of the Eastern Countries

Examples from thematic areas – Water accounts

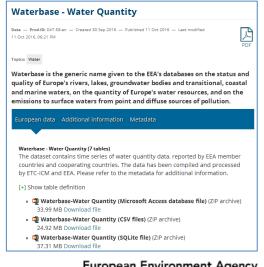
1) STORY / ASSESSMENT


Use of freshwater resources Indicator Assessment — Prod-IID: IND-11-en Also known as: CEI 018, WAT 001 — Created 27 Oct 2015 — Published 21 Mar 2016 — Last modified 28 Aug 2016, 05-42 AM Topics: Water Key messages * While water is generally abundant in Europe, water scarcity and droughts continue to affect some water basins in particular seasons.

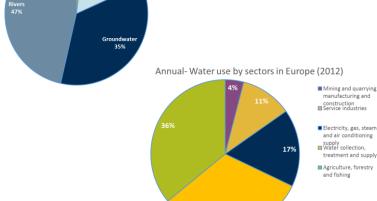
- * writine Water is generally sourcidant in Europe, water Scartiny and unforcing to uniquest continue to anect some water boarins in particular seasons. The Mediterranean region and most of the densely populated river basins in different parts of Europe are hot Spots for water stress conditions.
 * During winter, some 30 million inhabitants live under water stress conditions, while the flaure for summer is 70 million. This
- corresponds to 6 % and 14 % of the total population of Europe respectively.

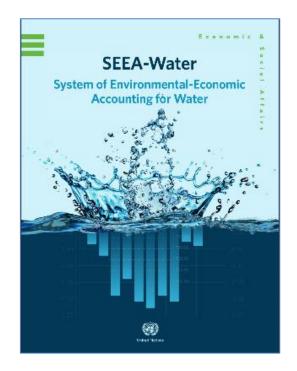
 Around 20 % of total the population of the Mediterranean region live under permanent water stress conditions. More than half (53 %)
- Around 20 % of total the population of the Mediterranean region live under permanent water stress conditions. More than half (53 % of the Mediterranean population is effected by water stress during the summer.
- At 46 % and 35 % respectively, rivers and groundwater resources provide more than 80 % of the total water demand in Europe.
- = Agriculture accounts for 36 % of total water use on an annual scale. In summer, this increases to about 60 %. Agriculture in the Mediterranean region alone accounts for almost 75 % of total water use for agriculture in Europe.
- Public water supply is second to agriculture, accounting for 32 % of total water use. This puts pressure on renewable water resources, particularly in high population density areas with no water coming from upstream.
- Service sector has become one of the main pressures on renewable water resources, accounting for 11 % of total annual water use. Small Mediterranean islands in particular are under severe water stress conditions due to receiving 10-15 times more tourists than they have local inhabitants.

Freshwater abstraction and water use Is the abstraction rate of water sustainable?

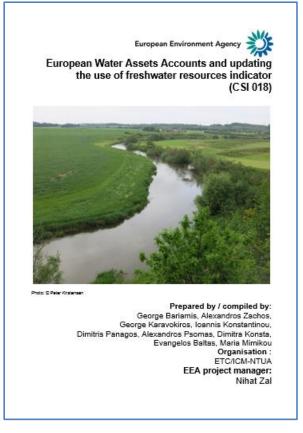

2) INTERACTIVE GRAPHS

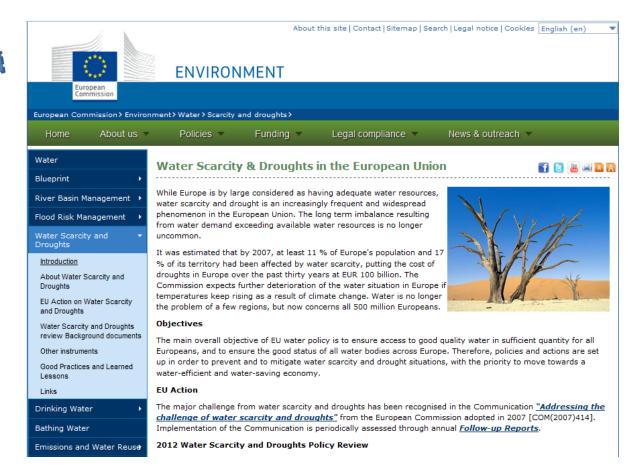
3) INDICATOR MANAGEMENT SYSTEM

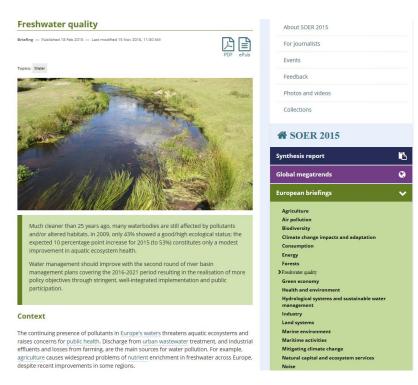

4) ACCESS TO DATA

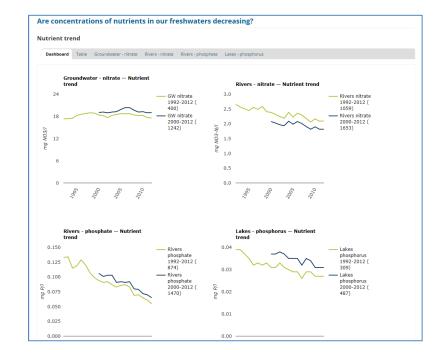


Artificial reservoir




Examples from thematic areas – Water accounts




Examples from thematic areas – Water quality

1) STORY / ASSESSMENT

Example to the EU policy lines: Good ecological status of freshwater bodies – Water Framework Directive Nutrients in freshwater - Are concentration of nutrients in our freshwater decreasing?

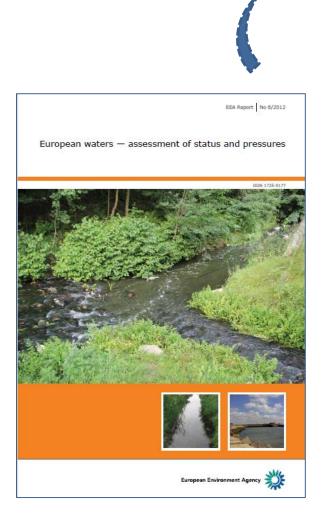
2) INTERACTIVE GRAPHS

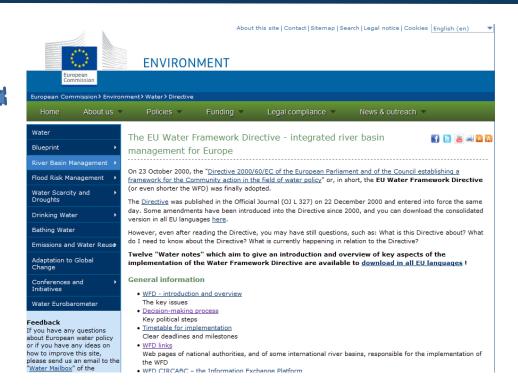
3) INDICATOR MANAGEMENT SYSTEM

4) ACCESS TO DATA

RecordRepc -	CountryCod v	Waterbasell · NationalSta ·	Year •	Aggregation .	Appropriation v	Appropriation v	Aggregation - Determinan -	Unit Nutrie	
NA	HU	HU RV 04FB3(04FB36		Annual	Annual	Man Charles	12 Total ammon		
NΔ	HU	HU RV 04FB36 04FB36		Annual	Annual		12 Total inorgani		
NA	HU	HU RV 04FB3(04FB36		Annual	Annual		12 Total nitrogen		
NA	HU	HU RV 04FB36 04FB36	1987	Annual	Annual		12 Total oxidises		
2013-12-31	LT	LT RV LTR137 LTR137		Annual	Annual	01-12	12 Orthophosph		
2013-12-31	LT	LT RV LTR137 LTR137	2009	Annual	Annual	01-12	12 Oxygen satur.		
NA	HU	HU RV 04FB3(04FB36	1987	Annual	Annual		12 Total phosphi		
NA	HU	HU RV 04FB36 04FB36	1987	Summer	Summer		3 BODS	mg/I 02	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 CODMn	mg/I 02	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 CODCr	mg/I 02	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Dissolved oxy	s mg/I O2	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Nitrate	mg/I N	
NA	HU	HU_RV_04FB3(04FB36	1987	Summer	Summer		3 Nitrite	mg/I N	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Total organic	n mg/I N	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Orthophosph	a mg/I P	
NA	HU	HU_RV_04FB3(04FB36	1987	Summer	Summer		3 Oxygen satur.	ar 96	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Total ammon	it mg/l N	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Total inorgani	ic mg/I N	
NA	HU	HU_RV_04FB3(04FB36	1987	Summer	Summer		3 Total nitroger	mg/I N	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Total oxidised	mg/I N	
NA	HU	HU_RV_04FB36 04FB36	1987	Summer	Summer		3 Total phospho	mg/IP	
NA	HU	HU_RV_04FB3(04FB36	1987	Winter	Winter		3 BOD5	mg/I O2	
NA	HU	HU_RV_04FB36 04FB36	1987	Winter	Winter		3 CODMn	mg/I O2	
NA	HU	HU_RV_04FB3f 04FB36	1987	Winter	Winter		3 CODCr	mg/I O2	
NA	HU	HU_RV_04FB3(04FB36	1987	Winter	Winter		3 Dissolved oxy		
NA	HU	HU_RV_04FB36 04FB36	1987	Winter	Winter		3 Nitrate	mg/I N	
NA	HU	HU_RV_04FB36 04FB36	1987	Winter	Winter		3 Nitrite	mg/I N	
NA	HU	HU_RV_04FB3(04FB36	1987	Winter	Winter		3 Total organic		
NA	HU	HU_RV_04FB36 04FB36		Winter	Winter			Orthophospha mg/I P	
NA	HU	HU_RV_04FB36 04FB36	1987	Winter	Winter			Oxygen satura %	
NA	HU	HU_RV_04FB3(04FB36	1987	Winter	Winter		3 Total ammon		
NA	HU	HU_RV_04FB36 04FB36		Winter	Winter		3 Total inorgani		
NA	HU	HU_RV_04FB36 04FB36		Winter	Winter		3 Total nitroger		
NA	HU	HU_RV_04FB3(04FB36		Winter	Winter		3 Total oxidised		
NA	HU	HU_RV_04FB36 04FB36		Winter	Winter		3 Total phosphi		
NA	HU	HU RV 04FB3f 04FB36	1988	Annual	Annual		12 BOD5	mg/I O2	

Examples from thematic areas – Water quality

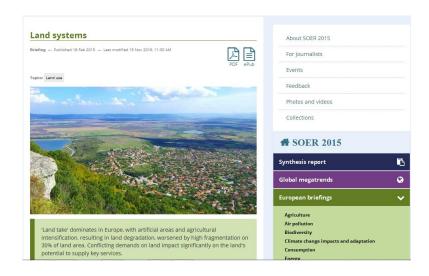

WFD –River Basin Management Plans



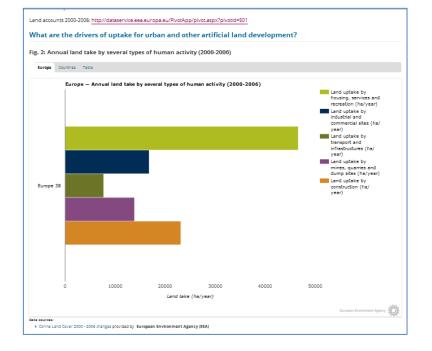
WATERBASE

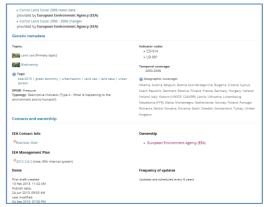
Rivers Lakes Transitional, coastal and marine Groundwater

Emissions to water

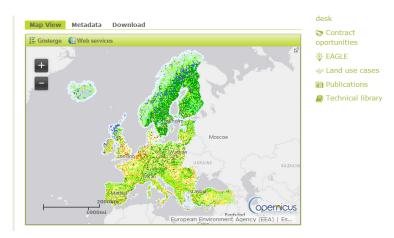


Examples from thematic areas – CORINE Land Cover


1) STORY / ASSESSMENT

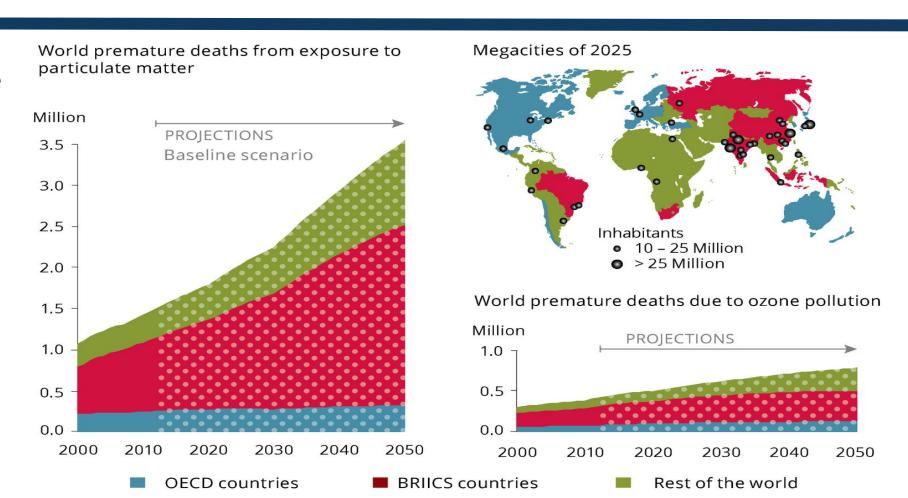

Example to the relevant EU policy line: Natural water retention measures for the adaptation to climate change

Land (up)take - CORINE

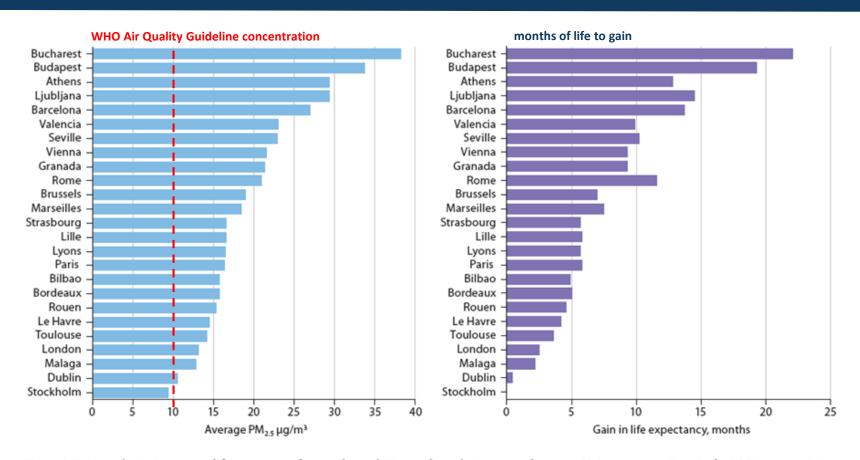

2) INTERACTIVE GRAPHS

3) INDICATOR MANAGEMENT SYSTEM

4) ACCESS TO DATA



Area 1 Air Quality – why it matters / what can be gained


Is expected to be the main environmental cause of premature mortality worldwide by 2050

Key issue : Fine Particulate Matter

"Batumi Action for Cleaner Air" 2016-2021 has committed a policy focus on air quality

Area 1 Air Quality – why it matters / what can be gained

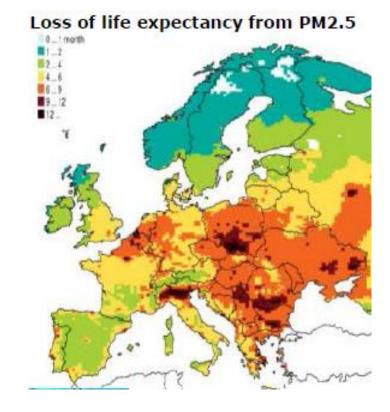


Figure 2. Projected gain in average life expectancy for people aged 30 years by reducing annual average $PM_{2.5}$ concentrations in the 25 European cities participating in the Aphekom project to the WHO air quality guideline concentration of 10 μ g/m³ (based on Aphekom, 2011).

Area 1 International Country Obligations on Air Quality

formal commitments with implementation control & sanction mechanisms

"New" EU Association Agreements

Air Quality Framework Directive

- → Determine Non-Attainment Zones
- (= exploratory monitoring)
- → Elaborate, Implement & Assess Air Quality Management Plans (= continuous monitoring)

Access to Information Directive (= Aarhus, with explicit focus on electronic information)

WHO → aim towards health-oriented air quality guideline values Aarhus → Inform your citizens (as up-to-date as possible) **UN-ECE** Indicator Reporting

Batumi Action for Cleaner Air 2016-2021

- → systematic, comparable and transparent monitoring
- → national action programmes, public awareness

CLRTAP → report & reduce national emissions

